QuickStart Program Development - User's Guide

Copyright 2009 © Embedded Artists AB

QuickStart Program
Development

User’s Guide

Get Up-and-Running Quickly and
Start Developing on Day 1...

@ g

EA2-USG-0509 v1.1

QuickStart Program Development - User’s Guide Page 2

Embedded Artists AB
Sodra Promenaden 51
SE-211 38 Malmo

Sweden

info@EmbeddedArtists.com
http://www.EmbeddedArtists.com

Copyright 2005-2009 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior

written permission of Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents
hereof and specifically disclaim any implied warranties or merchantability or fitness for any
particular purpose. Information in this publication is subject to change without notice and
does not represent a commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Please send
your comments to support@EmbeddedArtists.com.

Trademarks

InfraBed and ESIC are trademarks of Embedded Artists AB. All other brand and product
names mentioned herein are trademarks, services marks, registered trademarks, or registered
service marks of their respective owners and should be treated as such.

Copyright 2009 © Embedded Artists AB

mailto:info@EmbeddedArtists.com
http://www.embeddedartists.com/
mailto:support@EmbeddedArtists.com

QuickStart Program Development - User’s Guide Page 3

Table of Contents

1 Introduction 4
1.1 Low Cost QuickStart Boards 4
1.1.1 Design and Production Services 4
1.2 Other QuickStart/Education/OEM Boards and Kits 4
2 Getting Started 5
2.1 Test program 5
2.2 Program Download 6
2.2.1 NXP LPC2000 Flash Utility 6
2.2.2 LPC21ISP 7
2.3 Program Development Environment 9
2.4 Installing the QuickStart Build Environment 10
3 QuickStart Build Environment 16
3.1 Makefiles 16
3.2 Startup Framework 19
3.3 GCC 23

4 Further Information 24

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

1 Introduction

Thank you for buying a product from Embedded Artists. This document is a User’s Guide
that describes how to get started with application program development on day 1 using our
QuickStart Build Environment for NXP’s LPC2xxx family of ARM7 microcontrollers. This
document is common for our LPC2xxx QuickStart/Education/OEM Boards from Embedded
Artists.

1.1 Low Cost QuickStart Boards

Our QuickStart/Education/OEM Boards are very low cost and can be used for prototyping /
development as well as for OEM production. Modifications for OEM production can easily
be done, even for modest production volumes. Contact Embedded Artists for further
information about design and production services.

1.1.1 Design and Production Services

Embedded Artists provide design services for custom designs, either completely new or
modification to existing boards. Specific peripherals and/or 1/0 can easily be added to the
different designs, for example communication interfaces, specific analogue or digital 1/0O,
and power supplies. Embedded Artists has a broad, and long, experience in designing
industrial electronics in general, and specifically with NXP LPC2xxx microcontroller family.
Our competence also include wireless and wired communication for embedded systems,
such as IEEE802.11b/g (WLAN), Bluetooth™, ZigBee™, ISM RF, Ethernet, CAN, RS485,
and Fieldbuses.

1.2 Other QuickStart/Education/OEM Boards and Kits

Visit Embedded Artists’ home page, www.EmbeddedArtists.com, for information about
other QuickStart/Education/OEM boards / kits or contact your local distributor.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

2 Getting Started

2.1 Test program

Some QuickStart/Education/OEM Boards come with a pre-installed test program. The test
program is great for verifying that the board really works, and can for example be used if
you suspect that the board has been damaged (for some reason).

See details about a possible test program in the User’s Manual for the specific board. It can
for example be a program that output a running-one pattern on the 1/0 pins. LEDs can then
be connected to each 1/0 pin for simple verification. Internal functions, like the Real-Time
Clock (RTC) and EEPROM will also be tested (if present) as well as the UART.

Connect the board to a terminal program on the PC. A great one is included on the disk. The
baud rate differs between boards depending on different crystal clock frequencies. Check
with the User’s Manual for the specific board you are using, but in general the baud rate is
115200 bps for 14.7456 MHz crystals and 38400 bps for 12.0000 MHz crystals. 8 data bits,
no parity bits, and one stop bit (i.e., 8N1) is typically used.

The test program will output test result information regarding the internal tests on the
terminal, for example from the RTC, I°C and E’PROM tests. Also, the UART/RS232
channel can be tested by typing characters in the terminal program.

The output from the test program will look something like in Figure 1 below. Note that the
screen shot below is just an example. Every board is unique.

-[o] x|
B

e *
* Test program for LPC213x QuickS8tart Board *
% Uepsion: 1.0 -
Date: 2005-07-12 *
% () Embedded Artists 2005 *
a3 *
% EEPROM and I2C test *
Test #1 — write string ’‘String #1’ to address BxBOBB

— done <¢status code OK>

— program cycle completed
Test #2 — write string 'sTrInG #2' to address BxBBaB

— done ¢status code OK>

— program cycle completed
Test #3 — read string from address BxB6088

— string is *String #1’
Test #4 — read str1ng from address BxBBaB

- string is sTPInG #2’
Test #5 — write string 'sTrInG #2' to address BxBEE4

— done ¢{status code QK>

— program cycle completed
Test #6 — read string from_address Gx0808

string is ‘StrisTrInG H2*

Summary of tests: Passed all tests?

% RIC test *

...... test OK?

10 and UART test
Loop through all I-0 pins (»unning *'8'>
- PB.4 to PA.31, P1.16 to P1.31
(not in above order>
— PA.2 to PA.3 tested via EEPROM and I2C test
— PA.A to PA.1 tested via UART test

I EEEEEREE]
LERERERE]

Press any key on terminal and verify echo back

(116 decimal
{181 decimal
(115 decimal?
decimal
{185 decimal>
€118 decimal>
{183 decimal>

eceived char:
eceived char:
eceived char:
eceived char:
eceived char:
eceived char:
eceived char:

TR
~
[
[
=

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

2.2 Program Download

For now, it is assumed that the program to be downloaded is already developed and there
exist a HEX-file to be downloaded. This HEX-file represents the binary image of the
application program.

There are basically two ways of downloading a program into the LPC2xxx microcontroller:

e ISP — In-System Programming
The LPC2xxx microcontroller provides on-chip bootloader software that allows
programming of the internal flash memory over the serial channel. The bootloader is
activated by pulling port pin P0.14 (sometimes P2.10) low during reset of the
microcontroller. Most boards contain a circuit for automatically controlling pin
P0.14/P2.10 and the reset signal over the RS232 channel. This allows the program
download to be fully automated.

o FlashMagic (see link on CDROM/DVD)

o NXP provides a utility program for In-System Flash (ISP) programming
called LPC2000 Flash Utility.

o Alternatively, there is a program called LPC21ISP that can be used. Source
code is available. This program also provides a terminal functionality, which
can be very helpful when developing your application program. The same
serial channel that is used to download the program is typically also used for
printing out information from the running program. The program
immediately switch to terminal mode after program download and will
hence not miss any characters sent on the serial channel directly after
program start.

e JTAG
For specific information about program download (i.e., Flash programming) with a
JTAG interface, consult the manual for the specific JTAG interface that is used (e.g.,
CrossConnect from Rowley Associates, J-link from Segger, Ulink from Keil, or
Wiggler from MacRaigor).

Most QuickStart/education/OEM Boards have two jumpers / links that will connect the
RS232 channel to the active control over pin P0.14/P2.10 and the reset signal. See the User’s
Manual for the specific board you are using for details. Some boards connect the serial
channel to a USB-to-serial bridge chip, like the FT232RL from FTDI.

After program download, the jumpers / links can be left connected, or removed if needed. If
for example the PC end controls the RS232 signals DTR and/or RTS during normal program
execution, then it might be required that the jumpers / links are removed after program
download.

2.2.1 NXP LPC2000 Flash Utility

NXP LPC2000 Flash Utility program looks like Figure 2 below. Never versions than v2.2.0
may exist when you read this document.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

< NIPGION0HashilTs 1Ty} AEEl
File Buffer Help
m LPC2000 Flash Utility V2.2.0
Flazh Programming Eraze / Blank Comminic-ation
Filename: Connected To Port
. (+ Entire Device COM1- -
e | i ===
Execute Code 38
Upload to Flash ¥ e Unload statSector |0 [115200 +]
Erase I ,—
Compare Flash | Manual Reset | End Sector: Time-Out [seck ,_2
Device Use DTR/RTS
Device: Iﬁ ,— fior Reset and
EVICE. || PC2106 Read Pt ID v Boot Liad
KTAL Freq. [kHz): |1 4746 Device ID Boot Loader ID- Selection

Figure 2 — NXP LPC2000 Flash Utility Screenshot

Configure the dialog as shown above. The program will control the RS232 signals DTR and
RTS if the appropriate checkbox is checked, and hence provide fully automated program
download.

You can easily test the connection with a QuickStart/Education/OEM Board by pressing the
Read Device ID button. The text fields for Part ID and Boot Loader ID will then contain
uploaded information from the microcontroller. Note that the XTAL Freqg. must be set to
appropriate value. For most boards it’s either 14.7456 MHz or 12.0000 MHz. In these cases
the value 14746 or 12000 shall be written in the text box. If the crystal frequency has been
changed, make sure the appropriate value is set. Set the communication baud rate to 115200
(for 14.7456 MHz crystal) or 38400 (a reliable connection cannot be achieved with higher
baud rates if the crystal is 12 MHz). If no connection can be established test with a low Baud
Rate, for example 1200 bps. Also verify that the correct COM-port has been selected (under
Connected to Port).

Select the HEX file to be downloaded and then press the Upload to Flash button.

The downloaded program will immediately start after the download (i.e. the Upload to Flash
operation is ready) is the option Execute Code after Upload is checked.

2.2.2 LPC21ISP

The LPC21ISP program is made publicly available by Martin Maurer. Source code is also
available from a yahoo group that has been created for the program. Figure 3 below shows
the command syntax for the program.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

- InfraBed Blue-Webbkurs Eval

C:x>1lpc2iisp

Portable command line ISP for Philips LPC28B8B family and
Uersion 1.22 Analog Devices ADUC 7B
Compiled for Windows: Hov 8 2884 21:84:11

Portions Copyright <(c> by Aeolus Development 28064
http:/7wuw.aeolusdeve lopment .con

Example: lpc2lisp test.hex coml 115288 14746

Philips LPC2008 family (default)
Gy

Syntax: 1pc2iisp [Options] file comport baudrate Oscillator_in_kHz

Copyright <(c> by Martin Maurer, 2083, 26084 Email: Martin.MaurerPclibb.de

Options: -bin for uploading binary file

=hex for uploading file in intel hex format (default?>

=term for starting terminal after upload

=termonly for starting terminal without an upload

=debuy for creating a lot of debug infos

—control for controlling R8232 lines for easier booting
{Reset = DIR, EnableBootLoader = RIS

~logfile for enabling logging of terminal output to lpc2lisp.log

-ADARM for downloading to an Analog Devices
ARM microcontroller ADUCTBxx

=PHILIPSARM for downloading to a microcontroller from

El

Figure 3 — LPC21ISP Portable Command Line ISP Screenshot

A typical program download sequence may look like in Figure 4 below. Here, the test
program is downloaded. As seen, the first part is the actual program download phase. Then
this is done, the program switches to being a terminal (the second part) and the messages
from the test program is displayed. It also sends anything typed on the keyboard back to the
QuickStart/Education/OEM Board. As seen the program ends when ESC is pressed.

This sequence illustrates the benefits from using the program as a terminal directly after

program download. No characters are missed after program start.

LPC2106-gec-newlib vi [=IE3

1pc2lisp version 2.00
ile ./testprogram_lpc213x_gsb.hex loaded...

onverting File ./t st;» g»am_1£0213x_qsh.hex to bhinary format...
ile ./testprogram_lpc213x_gsh.hex converted to bhinary format...
arning: data not aligned to 4 byte address, address OxBOBB1ESS
arning: data not aligned to 4 byte address, address OxB0B01ES6
arning: data not aligned to 4 bhyte address, address BxBOBB1ES?
arning: data not aligned to 4 byte address, address OxB006262A
not aligned to 4 byte address. address BxB000262B
: giaamnﬁanm/msaa ytes

version: 2.0.0

ead part ID: LPC2132, 64 kiB ROM ~ 16 kiB SRAM (196369>
Sector B
T PR TR
P PR R
Download Finished... taking 3 seconds
Now launching the brand new code
Terminal started (press Escape to abort)

3 -
% Test program For LPC213x QuickStart Boawd =
w Uersion: 1. =
% Date: 2065-07-12 =
% (C)> Embedded Artists 2005 =
3 -
s EEPROM and I2C test =
Test #1 - write string ‘String H#1’ to address Dx0000
- done (status code
= progran cycle completed
Test #2 - write string ‘sTeInG H#2' to address Bx00a0
- done {status code OK>
- p»ogran cycle completed
Test #3 - read string from address Dx0000
= string is ‘Steing #1°
Test #4 - read string from address Bx00a0
= string is ‘sTeInG #2°
Test #5 - write string ‘sTeInG H#2' to address Bx0004
- done {status code OK>
- p»ogran cycle completed
Test #6 - read string from address Dx0000
= string is ‘SteisTrInG #2°

Summary of tests: Passed all tests?

w# RIC test *

...... test OK?

Figure 4 — LPC21ISP Command Line ISP Download Screenshot Example

Copyright 2009 © Embedded Artists AB

~

Program
> Download
Phase

Terminal
- Phase

QuickStart Program Development - User’s Guide

Another benefit with this program is that it runs under Linux.

Use version 1.48, or later, of LPC21ISP.EXE since older versions must be recompiled with
increased reset timeout (when the program tries to synchronize to our
QuickStart/Education/OEM Boards). The timeout should be increased to at least 350 ms.

2.3 Program Development Environment

There are many options when it comes to the actual application program development. First
of all, you must select a development environment, i.e., an editor (preferably with project
management capabilities), a compiler package (compiler plus linker), and a debugger.
Fortunately, there are many different choices for ARM program development, each with its
pros and cons. The list below is far from complete but gives a general overview.

e QuickStart Build Environment from Embedded Artists
Embedded Avrtists has created a complete GCC build environment for all
QuickStart/Education/OEM Boards. This will ease program development for novel
users. By installing the QuickStart Build Environment you will automatically get a
complete setup of the build environment.

e Keil uVision
This is another complete development environment, but from Keil. It includes an
editor, project manager, a complete compiler build environment, and a debugger. A
code size limited evaluation version can be downloaded from Keil’s homepage.

o Rowley Associates CrossWorks for ARM
A complete development environment from Rowley Associates, including an editor,
project manager, a complete compiler build environment, and a debugger. A 30-day
limited evaluation version can be downloaded from Rowley’s homepage.

e IAR Embedded Workbench
A complete development environment from IAR Systems, including an editor,
project manager, a complete compiler build environment, and a debugger. A code
size limited evaluation version can be downloaded from IAR’s homepage.

e Programmers notepad
This is a very good editor and project manager that is increasing in popularity. The
program can easily be integrated with the GCC compiler.

o Eclipse + CDT
This is a very good development environment (editor and project manager) with
specific support for C/C++ code development. It does not contain a compiler but can
easily be connected to one, for example GCC.

e GCC distribution GNUARM
A complete distribution of GCC, specifically for ARM processors. Current version
of GCCis 4.2.2.

e WinARM
This is another distribution that not only contains GCC but also Programmers
Notepad, LPC21ISP, a terminal program, and JTAG drivers.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide Page 10

2.4 Installing the QuickStart Build Environment

This section describes the necessary steps of program installation that is needed to get the
QuickStart Build Environment ready for your use.

e Start with installing the GNUARM distribution that can be downloaded from
Embedded Avrtists web site. The current version of the file is called:
bu-2.18 gcc-4.2.2-c-c++ _nl-1.15.0_gi-6.7.1.exe.
The installation is very simple and straightforward. It’s just following the default
installation steps as illustrated in the pictures below:

r

m@g

i Setup - GNUAR

Welcome to the GNUARM Setup
Wizard
This will install GMUARM 4.2.2 on your computer.
It is recommended that you close all other applications before
continuing.
Click MNext to continue, or Cancel to exit Setup. I
| A
. Ned> 3 Cancel
= =
&5 Setup - GNUARM o] &) [

License Agreement

Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

GMU GENERAL FUBLIC LICENSE
Version 2, June 1331

[l »

Copyright (C) 1989. 1997 Free Software Foundation, Inc.

55 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is pemitted to copy and distibute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your i

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

s Setup - GNUARM o (=

Select Destination Location
Where should GNUARM be installed?

l Setup will install GNUARM into the following folder.

Ta continy MNead. if you would like to select a different folder, click Browse. Use the default
—— e installation

directory

At least 8020 ME of free disk space is required.

” N
o [tet>) [oos

= = i

&5 Setup - GNUARM Q_;_‘: o)

Select Components
Which components should be installed?

Select the components you want to install; clear the components you do not want to
install. Click Mest when you are ready to continue.

[l installation B

Little Endian 725ME
LE Libraries 12,1 MB
ARM-THUME Interwarking 12,2 MB
THUMEBE 242 MB

m

12,1 MB

12,2 MB

Floating Point Unit 241 MB

; FPU Libraries 12,1 MB

- [¥] ARM-THUME Irterworking 121MB 7
Cument selection requires at least 951,3 ME of disk space.
P
<Back ([Ned>) | Cancel

N

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

r

{5 Setup - GNUARM L =SE

Select Components
Which components should be installed?

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

lCustom installation v]

¢ [] ARM-THUMB Interwarking 122 MB [+
i [¥] Floating Paint Unit 241 MB

- [¥] FPU Libraries 12,1 MB

- ing |

< D Big dia =

: e 121MB[
&[] ARM-THUME Interwarking 12.2 MB
[THUME
i ["] THUMB Librares 121 mp =

Cument selection requires at least 878,7 MEB of disk space.

If you want to \
save space on
your harddisk,
you can
deseclect the

Big Endian
component.)

&4 Setup - GNUARM - - - ESRIE

Select Start Menu Folder
Where should Setup place the program’s shortcuts?

l Setup will create the program’s shortcuts in the following Start Menu folder.

To continue, click Next. ¥ you would like to select a different folder, click Browse.

GMUARM Browse...

[~] Dont create a Start Menu folder

« Back Meat > Cancel

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

f Setup - GNUARM

Select Additional Tasks
Which additional tasks should be peformed?

Select the addtional tasks you would like Setup to perform while installing GMUARM,

then click Mext.
N Do NOT Install
Additional icons: .
Croto o dosd the Cygwin
o)
e a desktop icon J DLLs.
Cygui T
[install Cyawin DLLs (DMLY in case you dont have or dont use Cyawin: \

i Il B e

{5 Setup - GNUARM ' B

Ready to Install
Setup is now ready to begin instaling GNUARM an your computer.

Click Install to continue with the installation, or click Back if you want to review or
change any settings.

Diestination location:
C:M\Program Files\GNUARM

Setup type:
Custom installation

| »

m

Selected components:
Little Endian
LE Libraries
ARM-THUME Interworking
THUMEBE
THUME Libraries
ARM-THUMB Interworking -

N
< Back . Install Cancel

e Now install the LPC2xxx-gcc-newlib vX X X X QuickStart Build
Environment (vX_X_X_ X is the current version of the file). The installation is also

in this case very simple and straightforward. Just follow the default installation
steps.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

Welcome to the InstallShield Wizard for
LPC2xxx-gcc-newlib

The InstallShield(R) Wizard vl allow you to modify, repair, or
remove LPC2xxx-goc-newlib. To continue, click Next.

wi EtalIShield |

License Agreement

Please read the Following license agreement: carefully.

(NE3

1. Terms and conditions
This document serves as Embedded Artists AB no-nonsense license statement and limited

warranty, for the InfraBed License.

This license statement and limited warranty constitutes a legal agreement (MLicense
agreement”) between vou (either as an individual or a single entity) and Embedded Artists AB
("Embedded Artists &E") for the software product {"Software™) identified above, including any
software, media, and accompanying on-line or printed documentation.

BY INSTALLING THE SOFTWARE, YOU AGREE TO BE EOUND BY ALL OF THE TERMS AND
CONDITIONS OF THE LICENSE AGREEMENT.

[<]}

()1 accept the terms in the license agreement
()1 do not accept the terms in the license agreement

N\
[<Back [um:-j)” Cancel |
N

[PEZoocacenewlibinstallsheld§izard)

Destination Folder
Click Mesxt toinstall to this Folder, or dick Change to install to a different folder.

Q Install LPC2se-gec-newlib to:

C:\Programiinfrabedievboardsil PC2ie-goc-newlib-v2_0_0_0f

Use the default
installation
directory

Please note that in order For the QuickStart Board to work with InfraBed(tm) you
have to use the suggested path.

N
TeEm

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

i AIPEA0oceranewliDEInEtalSels Wizard)

Ready to Install the Program

The wizard is ready bo begin installation.

Click Install to begin the installation.

IF wou weank to reviews or change any of your installation settings, click Back, Click Cancel ko
exit the wizard,

—
T e |

Note that if the compiler is not installed on the default location (¢ : /Program/GNUARM/)
the new path must be set in the files build.shand build _environment. sh. Both
files can be found in:
C:\Program\InfraBed\evboards\LPC2xxx-gcc-newlib-vX X X X\bin).
It is the variable COMPILERDIR2 that must be set (can be found on row 13 in both files).
The compiler path must be to the GNUARM/bin directory.

Note that the path above must contain the correct version number instead of
...vX_X X X\bin. It may for example be: ...wv2_4_0_1\bin.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

3 QuickStart Build Environment

The QuickStart Build Environment is a complete build environment for GCC including
program downloading via ISP. The build environment is built around a bash script. This
script sets up all necessary paths. When installing the QuickStart Build Environment you will
automatically get shortcuts to this bash script. A practical feature is that there can be
different scripts for different hardware platforms, for controlling different hardware specific
details of the platforms. There can also be many different compilers (including different
versions of the same compiler) without conflicting with each other.

The use of the bash script is optional but is recommended for non-experienced users.

A typical project has two subdirectories; build files and startup. Figure 5 below
illustrate the general structure.

= |) sample_project
| build_Files
I startup

Figure 5 — Typical Project Directory Structure

You can download example projects from Embedded Artists support page (available after
registration). These sample application projects have this basic structure. The followings
sections describe different aspects of the QuickStart Build Environment.

3.1 Makefiles

The subdirectory build files contains a general makefile and linker script files. The
subdirectory startup contains a configurable startup framework for
QuickStart/Education/OEM Board projects. The startup files form a library that is linked to
the main application.

The makefiles have a hierarchical structure. Each project, either an executable program file
or a library, has a simple makefile that just describe the specifics of the project. This
simple make£ile includes the general makefile that is placed in the build files
subdirectory.

Figure 6 below illustrates the simple makefile. The example comes from the startup
library, found under the startup subdirectory. The name of the resulting library is
libea_ startup_thumb.a. Two C-source code files are listed: consol . c and
framework. c. An assembler file called startup. S is also included in the library.

B
#

General makefile for building executable programs and

libraries for Embedded Artists' QuickStart Boards.
(C) 2001-2005 Embedded Artists AB

#
T R R

Name of resulting library. *:I

Name of target (executable program or library)
NAME = libea startup thumb

Link program to RAM or ROM (possible values for LD RAMROM is RAM or ROM,
1f not specified = ROM)
LD RAMROM = ROM

Name if specific CPU used (used by linker scripts to define correct memory map)
Valid CPUs are: LPC2101, LPC2102, LPC2103, LPC2104, LPC2105, LPC2106

LPC2114, LPC2119

LPC2124, LPC2129

LPC2131, LPC2132, LPC2134, LPC2136, LPC2138

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide Page 17

LPC2141, LPC2142, LPC2144, LPC2146, LPC2148

LPC2194

LPC2210, LPC2220, LPC2212, LPC2214,

LPC2290, LPC2292, LPC2294

If you have a new version not specified above, just select one of the old
versions with the same memory map.

CPU_VARIANT = LPC2132

H H 4

It is possible to override the automatic linker file selection with the variable

below.
No not use this opion unless you have very specific needs.
#LD_SCRIPT = build files/myOwnLinkScript_rom.ld

#LD_ SCRIPT PATH =

ELF-file contains debug information, or not

(possible values for DEBUG are 0 or 1)

Extra debug flags can be specified in DBFLAGS
DEBUG =1

#DBFLAGS =

Optimization setting
(-Os for small code size, -02 for speed)

OFLAGS = -0Os

Extra general flags

For example, compile for ARM / THUMB interworking (EFLAGS = -mthumb-interwork)
EFLAGS = -mthumb-interwork
Program code run in ARM or THUMB mode i _ _ .
Can be [ARM | THUMB] | The files are compiled in ARM
CODE = ARM I mode with THUMB interworking
List C source files heme EFLAGS). -
CSRCS = consol.c \

framework.c
List assembler source files here List all included C files.
ASRCS = startup.S

List subdirectories to recursively invoke ma
SUBDIRS =

List all included assembler files.

List additional libraries to link with
LIBS =

Add include search path for startup files, and other include directories
INC = -I.

Select if an executable program or a library shall be created
#PROGRAM MK = true I/’—f S
LIBRARY MK = true Select whether an executable

program file or a library shall be
created. One of the lines is
commented out.

Output format on hex file (if making a program); c
HEX FORMAT = ihex

Program to download executable program file into m
DOWNLOAD = lpc2lisp.exe

Configurations for download program
Which com-pot that is used, which download speed and what crystal frequency on the

board.

DL COMPORT = coml . o
DL_BAUDRATE = 115200 Include the general makefile here.
DL _CRYSTAL = 14746

it sais it sttt iasai st il
include ../build_files/general.mk
FARERAA AR AR R R R R R R R R R R R R R R R

s ssisssasiisdi

Figure 6 — Example QuickStart Build Environment Makefile from Startup Library

As seen in Figure 6 above the makefile ends with the command: include
../build files/general.mk. Thisis a general make file that is part of the complete
build environment. This part contains all specific details of compiler and linker invocation.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

Also at the end, the target must be decided; either an executable program or a library. Either
PROGRAM MK or LIBRARY MK must be set to true.

The example makefile above is quite simple to its structure. It is possible to create more
complex project structures that contain many subprojects. A typical example is to have an
application project in a root folder. Under this root folder a number of subdirectories exist
containing different blocks of functionality. For example, this can be a Real-Time Operating
System and a TCP/IP stack. This calls for a recursive makefile structure.

The makefile in the root filer will create an executable program. It also includes the
makefile in each of the subdirectories. The makefiles that exist in subdirectories will
create libraries. An example of a root make file is presented in Figure 7 below.

5
#

General makefile for building executable programs and

libraries for Embedded Artists' QuickStart Boards.

(C) 2001-2005 Embedded Artists AB

#

FHEHE R R R

Name of resulting program file.

Name of target (executable program or library)
NAME = testprogram 10m eth

Link program to RAM or ROM (possible values for LD RAMROM is RAM or ROM,
if not specified = ROM)
LD RAMROM = ROM

Name if specific CPU used (used by linker scripts to define correct memory map)
Valid CPUs are: LPC2101, LPC2102, LPC2103, LPC2104, LPC2105, LPC2106
LPC2114, LPC2119

LPC2124, LPC2129

LPC2131, LPC2132, LPC2134, LPC2136, LPC2138

LPC2141, LPC2142, LPC2144, LPC21l46, LPC2148

LPC2194

LPC2210, LPC2220, LPC2212, LPC2214,

LPC2290, LPC2292, LPC2294

If you have a new version not specified above, just select one of the old
versions with the same memory map.

CPU_VARIANT = LPC2132

H oS S HE S 3E S

It is possible to override the automatic linker file selection with the variable

below.
No not use this opion unless you have very specific needs.
#LD_SCRIPT = build files/myOwnLinkScript_ rom.ld

#LD_SCRIPT_PATH ; - - —_—
Custom linker scripts can be used,

but not in this makefile.

ELF-file contains debug information, or not

(possible values for DEBUG are 0 or 1)

Extra debug flags can be specified in DBFLAGS
DEBUG =1

#DBFLAGS =

Optimization setting
(-Os for small code size, -02 for speed)
OFLAGS = -0Os

Extra general flags

For example, compile for ARM / THUMB interworking (EFLAGS = -mthumb-interwork)
EFLAGS =
—L_
Program code run in ARM or THUMB mode ﬁe files are Compi|6d in THUMB
Can be [ARM | THUMB] mode
CODE = THUMB e S
List C source files here. _— _ :I:
CSRCS = main.c — The root folder only contains one

file, the main-file.

List assembler source files here
ASRCS =

List subdirectories to recursively invoke make in . _ .
| Three different subdirectories that

| contains different blocks of
\@mtions in the final application.

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

SUBDIRS = startup \

tepip \t' The three libraries that are created
pre_shptive_os in the recursive invocation of
List additional libraries to link with make are included in the final
LIBS = startup/libea startup thumb.a \ i~ati
tcpip/tcpip.a \ apphcanon. .
pre_emptive os/pre emptive os.a Note the Startup |lbl’afy-
|

Add include search path for startup files, and other include directories
INC = -I./startup

Select if an executable program or a library shall be created
PROGRAM MK = true
#LIBRARY_MK = true

Output format on hex file (if making a program); can be [srec | ihex]
HEX FORMAT = ihex

Program to download executable program file into microcontroller's FLASH
DOWNLOAD = lpc2lisp.exe

Configurations for download program
Which com-pot that is used, which download speed and what crystal frequency on the

board.

DL COMPORT = coml

DL BAUDRATE = 115200
DL CRYSTAL = 14746

AR R R R R R R
include build files/general.mk
iddiiddidddidididddididididdididiiddidididddidididddidididdidididiiddididaddaidaai

Figure 7 — Example Root Makefile and Recursive Invocation

To build the application program, start a command prompt (the bash script), change directory
to the project root, and type: make. Depending on the make file content, either an executable
program or a library will be created. To also download the executable program, type: make
deploy instead of just make.

A final note about the make file; make clean will erase all object files and make
depend will recreate dependency files (this is also always done when typing just make).
Finally, make terminal will just start the terminal function in the download program
(Ipc21isp). The specific settings for using the ISP download program can be set with the
DL_XXX variables (as seen at the end of Figure 7 above).

3.2 Startup Framework

As already mentioned, the startup files form a configurable startup framework. This is often
called a Board Support Package or BSP for short. It contains the very basic startup and
initialization code as well as a console with printf()- and scanf()-like functionality. The BSP
is very configurable and can be changed according to your specific needs. Each project can
have its specific settings. An example of how the configuration file looks like can be found
in Figure 8 below, and can be found in file config.h in the startup subdirectory.

/**
*

* Copyright:

* (C) 2000 - 2005 Embedded Artists AB
*

* Description:

* Framework for ARM7 processor

*

‘k***********************/

#ifndef config h
#define config h

/‘k************************

* Defines, macros, and typedefs

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

#define FOSC 14745600

#define USE PLL 1
#define
#define
#define

PLL MUL 4
PLL DIV 2
PBSD 4

/* initialize the MAM
#if USE_PLL

#else
#define CORE_FREQ (FOSC)
fendif

#if CORE_FREQ < 20000000
#define MAM_TIMING 1
#elif CORE_FREQ < 40000000
#define MAM TIMING 2
#else

#define MAM_TIMING 3
#endif

#define MAM_ SETTING 2

#define TRQ HANDLER 1

#ifndef RAM EXEC
#define MAM MAP 1

#else
#define MAM MAP 2
fendif

/* setup stack sizes */

#define stackSize_ SYS 600
#define stackSize SVC 64
#define stackSize UND 64
#define stackSize ABT 64
#define stackSize IRQ 600
#define stackSize FIQ 64

/* define consol settings */

/* define SRAM size */
#ifdef LPC2101

#define SRAM SIZE (2 * 1024)
#elif defined (LPC2102)
#define SRAM SIZE (4 * 1024)
#elif defined (LPC2103)
#define SRAM SIZE (8 * 1024)

Copyright 2009 © Embedded Artists AB

(Memory Accelerator Module)

‘k‘k*‘k**‘k*‘k‘k*‘k‘k*‘k****‘k*‘k‘k*‘k‘k*‘k****‘k*‘k‘k*‘k‘k*‘k****‘k**‘k*‘k‘k*********************/

/* External clock input frequency (must be

between 10 MHz and 25 MHz) */
/* 0 = do not use on-chip PLL,
1 = use on-chip PLL) */
/* PLL multiplication factor (1 to 32) */
/* PLL division factor (1, 2, 4, or 8) */
/* Peripheral bus speed divider (1, 2, or 4) */

*/

#define CORE FREQ (FOSC * PLL MUL)

/* number of CCLK to read from the FLASH */

/* number of CCLK to read from the FLASH */

/* number of CCLK to read from the FLASH */

/* O=disabled,
l=partly enabled (enabled for code prefetch,
but not for data),

2=fully enabled */

/* 0
1

Jump to common IRQ handler
Load vector directly from VIC,
LDR PC, [PC, #-0xFF0] */

i.e.,

/* initialize the exception vector mapping */

/* 1 =
2

exception vectors are in FLASH at 0x0000 0000,
exception vectors are in SRAM at 0x4000 0000 */

/* When exec. from RAM, MAM MAP should always be 2 */

#define CONSOL_UART 0
#define CONSOL BITRATE 115200
#define CONSOL_STARTUP_DELAY /* Short startup delay in order to remove
risk for false startbit detection,
timer #1 will be used in polled mode */
#define CONSOL_STARTUP_DELAY LENGTH 100 /* 100 us is slightly more than one
character at 115200 bps */
#define USE NEWLIB 0 /* 0 = do not use newlib (= save about 22k FLASH),
1 = use newlib = full implementation of printf(),
scanf (), and malloc() */
#define CONSOLE API PRINTF 1 /* 0 = printf () = sendString,
1 = simple, own implementation of printf () */
#define CONSOLE API SCANF 0 /* 0 = none,
1 = simple, own implementation of scanf () */

/* LPC2101 */
/* LPC2102 */

/* LPC2103 */

QuickStart Program Development - User’s Guide

#elif defined (LPC2104)

#define SRAM SIZE (16 * 1024) /* LPC2104 */
#elif defined (LPC2105)
#define SRAM SIZE (32 * 1024) /* LPC2105 */
#elif defined (LPC2106)
#define SRAM SIZE (64 * 1024) /* LPC2106 */

#elif defined (LPC2114)

#define SRAM SIZE (16 * 1024) /* LPC2114 */
#elif defined (LPC2124)
#define SRAM SIZE (16 * 1024) /* LPC2124 */
#elif defined (LPC2119)
#define SRAM SIZE (16 * 1024) /* LPC2119 */
#elif defined (LPC2129)
#define SRAM SIZE (16 * 1024) /* LPC2129 */

#elif defined (LPC2131)

#define SRAM SIZE (8 * 1024) /* LPC2131 */
#elif defined (LPC2132)
#define SRAM SIZE (16 * 1024) /* LPC2132 */
#elif defined (LPC2134)
#define SRAM SIZE (16 * 1024) /* LPC2134 */
#elif defined (LPC2136)
#define SRAM SIZE (32 * 1024) /* LPC2136 */
#elif defined (LPC2138)
#define SRAM SIZE (32 * 1024) /* LPC2138 */

#elif defined (LPC2141)

#define SRAM SIZE (8 * 1024) /* LPC2141 */
#elif defined (LPC2142)
#define SRAM SIZE (16 * 1024) /* LPC2142 */
#elif defined (LPC2144)
#define SRAM SIZE (16 * 1024) /* LPC2144 */
#elif defined (LPC2146)
#define SRAM SIZE (32 * 1024) /* LPC2146 */
#elif defined (LPC2148)
#define SRAM SIZE (32 * 1024) /* LPC2148 */

#elif defined (LPC2194)
#define SRAM SIZE (16 * 1024) /* LPC2194 */

#elif defined (LPC2210)

#define SRAM SIZE (16 * 1024) /* LPC2210 */

#elif defined (LPC2220)

#define SRAM SIZE (64 * 1024) /* LPC2220 */

elif defined (LPC2212)

#define SRAM SIZE (16 * 1024) /* LPC2212 */

#elif defined (LPC2214)

#define SRAM SIZE (16 * 1024) /* LPC2214 */

#elif defined (LPC2290)

#define SRAM SIZE (16 * 1024) /* LPC2290 */

#elif defined (LPC2292)

#define SRAM SIZE (16 * 1024) /* LPC2292 */

#elif defined (LPC2294)

#define SRAM SIZE (16 * 1024) /* LPC2294 */

#else

#error CPU_VARIANT not defined in the makefile, or illegal value

#endif

#define SRAM SADDR 0x40000000 /* SRAM starting address */

#define SRAM TOP (SRAM_SADDR+SRAM SIZE) /* SRAM end address + 1 */

#define SRAM EADDR (SRAM_SADDR+SRAM SIZE-1) /* SRAM end address */

#define STK SIZE (stackSize_SYS+stackSize_ SVC+stackSize_ UND+
stackSize ABT+stackSize IRQ+stackSize FIQ)

#define STK SADDR (SRAM_EADDR+1-STK SIZE) /* Stack start address */

#endif /* config h */

Figure 8 — Board Support Package (BSP) Configuration File

There are three versions of the consol in order to best fit different situations:

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

e A very simple version that basically only supports printing strings (without any
formatting parts) and printing numbers (decimal or hexadecimal).

o Asimple printf() implementation that supports the simplest formatting tags. The
implementation has been designed for least possible stack usage (about 40 bytes).

o A full ANSI printf() implementation from newlib (part of the compiler environment
that comes with GNUARM). This routine requires about 600 bytes of stack space
and should normally not be used in resource constraint systems.

The code size for the first two alternatives is minimal (about 2k in program size for the entire
framework). When using printf() from newlib, the code size is about 30 k for the entire
framework (including a large part of the newlib library).

Just edit the configuration file above and recompile your project. The recursive nature of the
makefiles will make sure that the startup library is recompiled and linked with the final
executable program.

You can download example projects from Embedded Artists support page (available after
registration).

The startup framework (BSP) is very simple and can best be understood by studying the
sample application source code files. If using the console functionality (printf()- and scanf()-
like functions) note that the function ealnit() must be called before printf() and the console
can be used. The following code segment illustrates this.

#include <ea_init.h>

int main(void)
{
eaInit(); //Now, the console/printf can be used

}

Also note that whenever the BSP printf() should be used, the following include file must be
included into the source code file.
#include <printf P.h>

As a summary; Embedded Artists’ QuickStart Build Environment is comprised of:

e A make build environment, controlled by bash script. A program or library build is
started via the command: make.

e A program download feature, by using the LPC21ISP program. A program build and
download is started via the command: make deploy.

e A Board Support Package (BSP) with startup code and console functions (i.e.,
printf() and scanf()-like functionality).

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide

3.3 GCC

This will be very similar to the QuickStart Build Environment example, except that you will
have to set up all paths manually and create your own startup files. The make files will also
be a bit more complex. An example makefile is presented in Figure 9 below. Much more
complex examples than the makefile below also exist.

#
Example makefile that creates a program called ‘test’, containing the
C-source code files: main.c, eeprom.c, and i2c.c plus the assembler

file startup.S

#

LIBS =

DEBUG = -g

CFLAGS = -Wall -nostartfiles -mthumb-interwork -mthumb

INCLUDE = -Iinc/ -Iinc/specific/ #specify include paths here
ARMCC = arm-elf-gcc

OBJS = main.o eeprom.o i2c.o startup.o

LDFLAGS = -Wl,-Trom.1ld #this file controls the linker

all: test.hex

test: $(OBJS)

arm-elf-gcc $(CFLAGS) $(LDFLAGS) $(OBJS) $(LIBS) -o test.elf
$.0: %.C

arm-elf-gcc -c $(INCLUDE) $(CFLAGS) $<
%$.0: %.S

arm-elf-gcc -c $(INCLUDE) $(CFLAGS) $<

$.0: %.C
arm-elf-gcc -c $(INCLUDE) $(CFLAGS) $<
%.hex: %

arm-elf-objcopy -O ihex $<.elf $S@
clean:
rm -f *.o test.elf test.hex

Figure 9 — Example GCC Makefile

Copyright 2009 © Embedded Artists AB

QuickStart Program Development - User’s Guide Page 24

4 Further Information

The LPC2xxx microcontroller is a complex chip and there exist a number of other
documents with a lot more information. The following documents are recommended as a
complement to this document.

[1] NXP LPC2xxx Datasheet
[2] NXP LPC2xxx User’s Manual
[3] NXPs LPC2xxx Errata Sheet

[4] ARM7TDMI Technical Reference Manual. Document identity: DDI10029G
http://www.arm.com/pdfs/DDI10029G_7TDMI_R3_trm.pdf

[5] ARM Architecture Reference Manual. Document identity: DDI0100E
Book, Second Edition, edited by David Seal, Addison-Wesley: ISBN 0-201-73719-1
Also available in PDF form on the ARM Technical Publications CD

[6] ARM System Developer’s Guide — Designing and Optimizing System Software, by
A.N. Sloss, D Symes, C. Wright. Elsevier: ISBN 1-55860-874-5

[7] Embedded System Design on a Shoestring, by Lewin Edwards.
Newnes: ISBN 0750676094.

[8] GNU Manuals
http://www.gnu.org/manual/

[9] GNU ARM tool chain for Cygwin
http://www.gnuarm.com

[10] An Introduction to the GNU Compiler and Linker, by Bill Gatliff
http://www.billgatliff.com

[11] LPC2000 Yahoo Group. A discussion forum dedicated entirely to the NXP LPC2xxx
series of microcontrollers.
http://groups.yahoo.com/group/lpc2000/

[12] The Insider’s Guide to the NXP ARM7-Based Microcontrollers, by Trevor Martin.
http://www.hitex.co.uk/arm/lpc2000book/index.html

Note that there can be newer versions of the documents than the ones linked to here. Always
check for the latest information / version.

Copyright 2009 © Embedded Artists AB

http://www.billgatliff.com/

